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ABSTRACT: The Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will measure Earth’s emis-
sion at wavelengths ranging from 3 to 54 um. The prelaunch clear-sky retrieval algorithm, evaluated with simulated test
data, indicates that PREFIRE measurements will be valuable for retrieving atmospheric water vapor and temperature pro-
files. Far infrared measurements provide unique retrieval information, indicated by the high ranking of select FIR channels
as primary contributors to the total degrees of freedom for signal (DFS). In utilizing all the PREFIRE channels, the aver-
age total DFS of 4 test regions ranges from 1.90 to 4.71. The information content increases with higher column water vapor
and in the presence of near-surface temperature inversions. Using the DFS profiles for guidance, the retrieval concentrates
information into 7 distinct layers to reduce the retrieval uncertainty per layer. Sensitivity tests indicate forward model error
due to surface emissivity uncertainty results in about a 9% increase in column water vapor uncertainty. The clear-sky re-
trieval is sensitive to the presence of undetected ice clouds, especially those with optical depths larger than 0.2. Hence, in
addition to a separate PREFIRE cloud mask, optimal estimation retrieval metrics are explored as possible indicators of

cloudy scenes.
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1. Introduction

The far infrared (FIR; defined here as 15-50 um) plays an
important role in establishing the energy balance of the Earth
system. Differential solar heating between low and high lati-
tudes leads to colder polar temperatures, driving atmospheric
and oceanic energy transport from warm to cold regions (Serreze
et al. 2007). Since the wavelength of peak emission is inversely
proportional to temperature, cold polar regions emit as much as
55%—-65% of the infrared thermal energy in the FIR (L’Ecuyer
et al. 2021). Thus, it is especially important to have FIR coverage
for characterization of atmospheric/surface energy exchange in
polar regions.

The ability of surface emitted infrared radiation to escape
to space is determined by the atmospheric transparency. The
most transparent atmospheric window for thermal emission is
a broad spectral interval (approximately 8-14 wm) within the
midinfrared (MIR; 5-15 um) part of the electromagnetic
spectrum. The peak transparency of the MIR window de-
creases with increasing water vapor, but large parts of this
window have high (>80%) transmission in all Earth climate
conditions. Another region of partial transparency, often re-
ferred to as a “dirty” window, exists in the FIR part of the
electromagnetic spectrum from 17 to 24.4 um where some mi-
crowindows exhibit high transmission over small spectral in-
tervals (Rathke et al. 2002). This FIR window is not fully
transparent and its opacity depends strongly on the amount of
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water vapor present in the atmosphere, which varies signifi-
cantly both spatially and temporally (Chen and Liu 2016). In
high water vapor amounts in the tropics the FIR window may
be fully “closed,” and opaque to upwelling thermal radiation,
but in low water vapor amounts that occur in the polar
regions the transmission can be significant (Feldman et al.
2014). Hence, the FIR atmospheric window plays a critical
role in the regulation of global temperatures by cooling to
space in the cold and dry polar regions. The strong sensitiv-
ity of outgoing FIR emission to atmospheric water vapor is
also the basis for FIR water vapor retrievals.

Direct measurements of water vapor, critical for predicting
weather and understanding the climate system, have been
made for decades across the polar regions by radiosondes
(Durre et al. 2006). In addition, ground-based microwave
radiometers provide estimates of total column water vapor
(CWYV) using accurate retrieval techniques (Turner et al. 2007).
Imaging of water vapor from geostationary satellites provides
enhanced spatial and temporal coverage (Schmit et al. 2018).
Vertical distributions of moisture can be obtained from satel-
lite-based infrared sounders in low-Earth orbit (Menzel et al.
2018) providing global coverage of water vapor profiles from
missions such as AIRS (Maddy and Barnet 2008), IASI (Hilton
et al. 2012), and CrIS (Nalli et al. 2013). All such instruments
currently utilize the MIR; however, Merrelli and Turner (2012)
show that utilizing upwelling spectra that includes the FIR en-
hances the degrees of freedom for signal and increases the
information content available for temperature and water
vapor profiling retrievals. Other studies support the idea
that the FIR is useful for not only the lower troposphere
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(Turner and Mlawer 2010) but also the upper troposphere
and lower stratosphere (Shahabadi and Huang 2014; Palchetti
et al. 2015; Warwick et al. 2022). Planned implementation of
FIR sensors on upcoming satellite missions will, therefore,
be beneficial not just for measuring the complete emission
spectrum, but also providing unique sensitivity applicable to
temperature and water vapor retrievals especially in cold, dry
regions.

The first spaceborne spectral FIR measurements were
made using the Infrared Interferometer Sounder instrument
on the Nimbus-3 (Hanel et al. 1970) and Nimbus-4 (Hanel
et al. 1971) at wavelengths extending to 25 um. Over 50 years
later the Polar Radiant Energy in the Far Infrared Experi-
ment (PREFIRE; L’Ecuyer et al. 2021) will collect spectral
measurements in both the mid- and far IR. In fact, PREFIRE
will be the first satellite mission to sample the FIR spectra
since the Fourier spectrometer on Meteor-25 and Meteor-28
(Kempe et al. 1980), which launched in 1976 and 1977 provid-
ing spectra radiance from 6 to 25 um. With a 1.3° cross-track
field of view PREFIRE will improve spatial resolution by
a factor of 2-6 compared to the previous FIR spaceborne
measurements (Kempe et al. 1980), significantly increasing
the likelihood of observing clear-sky scenes. In addition,
PREFIRE will have moderate spectral resolution output
(with spectral sampling at approximately 0.84 um), paving the
way for future missions such as ESA’s Far-infrared Outgoing
Radiation Understanding and Monitoring (FORUM; Palchetti
et al. 2020), which will measure the FIR at high spectral
resolution.

PREFIRE will collect infrared spectra ranging from 3 to
54 pm for at least one year using a Thermal Infrared Spectro-
meter (TIRS). The TIRS instrument is an imaging spectrometer
small enough to fly aboard a relatively low cost CubeSat space-
craft, with approximate dimensions of 300 mm by 200 mm by
100 mm. A second TIRS instrument with similar specifica-
tions will orbit on a separate CubeSat spacecraft with a dis-
tinct equatorial crossing time. Launching two CubeSats will
provide time-differenced measurements in the poles to cap-
ture processes that occur on subdiurnal time scales. These
measurements will be used not only for water vapor retrievals,
but also for detecting cloud presence, discerning cloud phase,
and retrieving surface emissivity. Reliable water vapor re-
trievals will be used as input into other retrievals, including
surface emissivity, effectively enhancing prior knowledge of
the atmospheric state and the resultant atmospheric green-
house effect.

To provide immediate science and data products after
launch and in the absence of existing global FIR spectral
measurements, simulations must be performed prelaunch to
gauge the accuracy and information content of retrieved vari-
ables from TIRS measurements. An optimal estimation
framework (Rodgers 1976) is utilized to retrieve atmospheric
profiles of temperature and specific humidity as well as sur-
face temperature and integrated CWV. This technique re-
ports an associated uncertainty for each retrieval and is useful
for estimating the degrees of freedom for signal (DFS) that is
indicative of the amount of distinct information contained in
the measurements relative to an assumed a priori state. In this
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paper we investigate the information content of the various
TIRS channels and characterize the clear-sky retrieval uncer-
tainty using simulated observations from reanalyses at three
different polar regions that include the Greenland ice sheet,
Arctic Ocean, and Antarctica. PREFIRE will collect global
measurements; thus, we also investigate a fourth region in the
tropics to evaluate performance in humid environments. For-
ward model error due to the influence of the error in surface
emissivity and undetected clouds are also characterized. Ulti-
mately, these simulated results will be the foundation upon
which to derive atmospheric water vapor profiles from TIRS
observations after PREFIRE launches.

2. TIRS instrument

TIRS is an Offner-style imaging spectrometer, built to mea-
sure 8, 64-channel spectra (from 3 to 54 pum) simultaneously,
using a 64 X 8 element custom detector array. Instrument
constraints will have channel gaps at approximately 7, 15, and
30 wm, resulting in 54 unique useable channels, spaced ap-
proximately every 0.84 um, with modeled spectral response
functions (SRFs) shown in Fig. 1b. Due to acceptable risks for
low-cost, rapid deployment, some detector elements on the
operational TIRS instruments may be unusable resulting in
fewer channels for each of the cross-track spectra, but the
analysis that follows assumes complete spectra for these initial
simulations. Although the orbiting altitude of the PREFIRE
satellite will determine the precise spatial resolution and cov-
erage of the TIRS measurements, it is estimated that one scene
will have a spatial footprint of approximately 12 to 15 km, with a
distance of 250 km separating the first and eighth scene in the
cross-track direction.

A modeled spectrum, from a subarctic winter atmospheric
profile (McClatchey et al. 1972), illustrates the radiances at
high spectral resolution (Fig. 1a). Convolving the spectrum in
Fig. 1a with the SRFs in Fig. 1b results in an estimated TIRS
measurement in Fig. 1c. The noise equivalent delta radiance
(NEDR) provides an estimate of the sensor performance for
each of the 54 channels (Fig. 1d). The ratio of the radiance to
NEDR determines the signal-to-noise ratio (SNR) shown in
Fig. le. It is evident that the largest SNR regions are from
8 to 28 wm and SNR is expected to be low at wavelengths
greater than 30 um.

3. Optimal estimation retrieval algorithm

An optimal estimation framework retrieves temperature
and water vapor profiles using the different sources as listed
in Table 1. Auxiliary meteorological analysis data are used to
determine the a priori mean of the state variables and pro-
vides necessary inputs for running the forward model. The a
priori covariance of the retrieved variables, described in
section 3c, is utilized as a static input. Calibrated spectral
radiances from the TIRS instrument provide unique infor-
mation to the atmospheric retrieval and are also critical input
for the cloud mask and the surface emissivity retrieval. In the
PREFIRE processing system, any time a distinct cloud mask
deems a specific footprint a clear-sky scene then the atmospheric
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FIG. 1. (a) Modeled spectral radiance using the subarctic winter profile (McClatchey et al. 1972),

(b) modeled spectral response functions (SRFs) of the 54 TIRS channels, (c) TIRS channel radiances
after convolution of SRFs from (b) with the high resolution spectrum in (a), (d) noise-equivalent
delta radiance (NEDR), and (e) the resultant signal-to-noise ratio.

retrieval is performed using the surface emissivity retrieval as
input.

a. Overview and framework

The optimal estimation (OE) approach developed by Rodgers
(2000), which has become widely used in retrieving atmospheric
properties (Maahn et al. 2020; Turner and Lohnert 2014),
is the basis for the physical retrieval used in this paper. One
of its major advantages is that the OE method reports an un-
certainty for each retrieved parameter as constrained by the
uncertainties in the measurements and prior information. In
general, the goal of a retrieval is to derive an estimate for an
unknown state vector x from a known measurement vector y.
These two vectors are related using a forward model .7

y=7() +¢ 1)
where € represents the measurement noise. In this study we
relate the state variables to the TIRS spectra using the for-
ward model discussed in section 3b.

The state vector is initialized using an a priori estimate, be-
fore the algorithm iterates the state vector value (a standard

TABLE 1. Various inputs into the Atmospheric OE retrieval
algorithm (2B-ATM).

Name Description
Aux-Met Auxiliary meteorological analysis data
Static information A priori covariance matrix
L1B-RAD Measured TIRS spectral radiance
2B-MSK Cloud mask for determining clear conditions
2B-SFC Retrieved surface spectral emissivity
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nonlinear cost-function minimization) by calculating the for-
ward modeled spectral radiance and Jacobians at each step.
The state variables include atmospheric profiles of tempera-
ture and specific humidity Q, and surface temperature. The
humidity state variables are equal to the natural logarithm of
Q. Transforming to the logarithmic state space improves the
numerical stability for the water vapor profile, since the values
of O span multiple orders of magnitude through the vertical
profile. The logarithm also avoids numerical issues that could
arise from state updates that produce negative specific humid-
ity in the linear space. Furthermore, in most real atmospheric
data, the logarithm of Q more closely resembles a normal dis-
tribution than Q itself. Since one of the fundamental assump-
tions of OE is that deviations from the prior mean are
normally distributed, transforming Q in this manner helps en-
sure the data are more suitable for the OE method (Maahn
et al. 2020). Last, the retrieval calculates the total CWV and
the associated uncertainty by integrating the profile of the re-
trieved specific humidity.

b. Forward model

The radiative transfer model that is used to relate the state
variables to the measurements is the Principal Component—
based Radiative Transfer Model, version 3.4 (PCRTM; Liu
et al. 2006). The PCRTM operates on 101 fixed vertical pres-
sure levels. Inputs include profiles of temperature, specific
humidity, ozone, CO,, CHy, CO, and N,O. The surface is
characterized by pressure, temperature, and emissivity. The
PCRTM uses an instrument model for a thermal infrared
spectrometer with continuous spectral coverage from 50 to
2760 cm™! (approximately 3.6 to 200.0 wm in wavelength)
with 0.5 cm™~! wavenumber sampling. The surface emissivity
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input is gridded across 740 wavenumbers and includes the FIR.
This high resolution spectrum is convolved with the TIRS spec-
tral response functions, thus modeling the TIRS spectra.

c. A priori data

The OE algorithm uses an initial starting point, or a priori
value, before the TIRS measurements are factored in. The a
priori mean values are derived from the analysis fields and in-
terpolated to the location and time of the TIRS observations.
A probability distribution in the form of a covariance matrix
represents the errors in the analysis fields compared to the
true state. These errors include inherent error in the analysis
model, error due to spatial and temporal interpolation, and
any unresolved spatial features due to limited resolution of
the analysis model. Accurate estimates of the covariance are
difficult since it requires large datasets of independent known
truth profiles. An estimate of the temporal interpolation error
covariance can be computed by comparing the analysis pro-
files to the averaged values of the +6- and —6-h time steps.
This estimate will contain realistic vertical error correlations
in the atmospheric profile, assuming the analysis data accu-
rately represent atmospheric transport.

Initially, the first guess into the OE retrieval is from the
National Aeronautics and Space Administration (NASA)
Global Modeling and Assimilation Office (GMAQO) GEOS5
FP-IT analysis data (Lucchesi 2015); thus, GOES FP-IT data
are used to compute the a priori covariance matrices. For the
temperature and water vapor profiles the analysis data have
a time step of 3 h; hence, using the interpolation of the *6-h
time steps, as described above, will provide a conservative es-
timate for the error to account for unknown factors. Investi-
gating the variance over a wide range of latitudes, longitudes,
and seasons it is found that the covariance from the analysis
model has very little seasonal or longitudinal dependence,
and only small latitudinal dependence mostly due to the
change of the tropopause height. The variance in the tropo-
sphere (below approximately 100 hPa) is approximately (1.0 K)?
for temperature and (0.2)>-(0.6)* for log(Q). The vertical
correlation scales are approximately 100-200 hPa for both
temperature and log(Q) in the troposphere. Above the tropo-
sphere, the variance is relatively more restricted.

Our final a priori covariance for temperature, guided by the
analysis of GEOS FP-IT analysis described above, uses an au-
toregressive correlation model (Lerner et al. 2002) with a cor-
relation length scale for 7 and In(Q) of 200 hPa in the lower
atmosphere and 100 hPa in the upper atmosphere. These cor-
relation length scale estimates are similar to the values re-
ported by Errico and Privé (2014), for an analysis of GMAO
profiles. The variances are set to be moderately conservative
in the sense that the retrieval should not be too closely con-
strained to the prior, so the tropospheric variances are set to
(2.0 K)? for temperature and (0.6)* for log(Q). The primary
focus of this retrieval is on temperature and Q in the tropo-
sphere; thus, in the stratosphere the variances are reduced to
(0.5 K)? and (0.3)%. The surface temperature a priori variance
is set to (2.0 K)? in order to match the variance for the near-
surface atmospheric temperature. Figure 2 shows the In(Q)

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:15 PM UTC

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 40

correlation matrix and variance at all 101 PCRTM pressure
levels, which has the same structure as the temperature corre-
lation matrix (not shown). The operational algorithm will not
have any estimate of the atmospheric state other than the
NWP analysis fields. Therefore, the prior mean will also be
used as the first guess to start the iterative OE algorithm.

4. Test dataset

Three polar regions are investigated to establish retrieval
performance. The first region is in the relatively warm (sur-
face temperatures ranging from 247 to 285 K) Arctic Ocean,
east of Greenland in the Greenland Sea from 70° to 80°N and
from 5°W to 5°E. The second region, from 70° to 80°N and
from 45° to 35°W, is in central Greenland which has inher-
ently high surface elevation (surface temperatures ranging
from 219 to 271 K). The third region samples Antarctica for
all longitudes with a latitude range from 80° to 85°S, providing
sample test data over a variety of elevations across the Antarctic
ice sheet (surface temperatures ranging from 200 to 275 K).
The final region is in the much warmer (surface temperatures
ranging from 298 to 303 K) tropical Pacific Ocean, northeast
of Papua New Guinea on the equator, spanning 5°S to 5°N and
160°-170°E. This region provides example atmospheric profiles
representative of high amounts of column water vapor that
will be observed in the global PREFIRE dataset.

Atmospheric profiles of temperature, water vapor, and ozone
from ERAS (Hersbach et al. 2020) are randomly sampled from
2016 resulting in 8000 reanalysis test profiles for each region.
The temperature and water vapor fields are the primary atmo-
spheric inputs that will affect the TIRS radiances. The terrain
following 137 model pressure level ERAS data is interpolated
to the fixed PCRTM 101 model levels and the lowest model
level is used as an estimate of surface skin temperature. The sur-
face pressure from ERAS is also used as an input into PCRTM.
In this study CO and N,O PCRTM inputs are from the standard
subarctic winter values as given by McClatchey et al. (1972). In
addition, fixed values for CO, and CH,4 of 400 and 1.8 ppm, re-
spectively, are used as PCRTM input.

Realistic surface emissivity values are estimated using the
reported emissivities of four surface types in Huang et al.
(2016). For the tropics region the surface emissivity is always
that of pure water. For the Greenland and Antarctica regions
the surface emissivity is a randomly selected mixture of snow
types, which include fine, medium, and coarse snow as defined
in Huang et al. (2016). For the Arctic Ocean region, if the sur-
face temperature is above 277 K then the surface type is as-
sumed to be pure water and if the surface temperature is
below 269 K the surface types are randomly selected with pos-
sible values of fine, medium or coarse snow. If the surface
temperature is between the upper and lower threshold, then
the surface emissivity is randomly selected mixtures of two of
the four aforementioned surface types.

5. Degrees of freedom for signal

To quantify the information content of the temperature
and water vapor profiles we use the metric of DFS as defined
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FIG. 2. (top) Correlation matrix of log(Q) for the 101 PCRTM pressure levels. (bottom) The
standard deviation at each pressure level.

in Rodgers (2000). The total DFS is the trace of the averaging
kernel (A) and the DFS profile is the diagonal of A. The aver-
aging kernel is given by

A=(K'S; 'K+, 'K'S 'K,

where the Jacobian K is calculated from PCRTM, the a priori co-
variance S, is described in section 3c, and the error covariance
S, is equal to the squared noise equivalent radiance (NEDR)
with no correlated error between channels. Figure 3 shows
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example temperature and log(Q) Jacobians for the TIRS chan-
nels from a subarctic winter profile, which has a temperature
and moisture inversion below 850 hPa. It is evident that there is
significant sensitivity in the FIR to temperature and water vapor
at various levels in the atmosphere, including primarily upper at-
mosphere levels for wavelengths greater than 30 um.

a. Total DFS

Various factors influence atmospheric moisture informa-
tion content, including CWYV and surface properties such as
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FIG. 3. Jacobians of (a) temperature and (b) log(Q) calculated from standard subarctic winter profiles.
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FIG. 4. ERAS derived (a) total degrees of freedom for signal (DFS) and (b) column water vapor (CWV) at 0000 UTC
1 Apr 2016 across the Arctic (70°-90°N).

elevation, emissivity, and skin temperature contrast with near-
surface air temperature (Di et al. 2016). Regional distribution
of the total DFS across the Arctic is depicted at 0000 UTC
1 April 2016 using ERAS data (Fig. 4). Although the TIRS
instrument is not an imager, Fig. 4 provides a regional depic-
tion of the information content available at this specific time.
The total DFS spatial distribution is very similar to that of
the log;)CWYV, with some small-scale differences, suggesting
atmospheric profiles with relatively large CWV have en-
hanced total DFS.

The total DFS for the joint temperature and water vapor
retrieval is highly dependent on the amount of CWV present.
Investigating the total DFS for all test regions (Fig. 5) shows
that an increase in CWV corresponds to an increase in DFS.
The profiles with the smallest CWYV profiles have DFS values
near 1 and the tropics region (indicated by the separate
cluster of large CWV values in Fig. 5) have DFS values as
large as 5. The average total DFS for the Arctic Ocean,
Greenland, Antarctica, and tropics regions are 3.11, 2.15,
1.90, and 4.71, respectively.

Temperature inversions at the surface are prevalent in the
cold and dry conditions at the poles (Zhang et al. 2011). Here
we simply define the temperature inversions strength as the
maximum temperature in the boundary layer minus the sur-
face temperature. For small CWV conditions the presence
and strength of temperature inversions increase the DFS at a
given CWV value (Fig. 6), thus indicating a secondary influ-
ence on total DFS to the primary effect of CWV in enhancing
the total DFS (Fig. 5).

b. Channel rank

The relative importance of TIRS channels to the DFS can
be assessed by sequentially determining which channels con-
tribute the most information content to the retrieval. This
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channel selection works by first computing the DFS for each
individual channel, and selecting the channel with the maxi-
mum DFS. For each successive selection, the DFS is com-
puted for each unselected channel, given the fixed list of
already selected channels, and the channel that produces the
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FI1G. 5. Total DFS of the temperature and specific humidity re-
trievals as sampled from all four test regions. The total DFS is
shown as a function of log;y of the CWV. The color bar indicates
logyy of the number of counts. The histograms along the x and y
axes indicate the one-dimensional distribution of log;o(CWV and
DEFS, respectively.
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FIG. 6. DFS as a function of log;)CWYV, similar to Fig. 5, but con-
sidering only the three polar test regions in the Arctic Ocean,
Greenland, and Antarctica. The color bar indicates the average
strength of a temperature inversion (T-Inv) at a given DFS and
CWYV bin.

largest DFS increase is selected. This process is repeated for
all available TIRS channels, which results in a channel selec-
tion ordered by DFS, similar to information content studies of
cloud properties (L’Ecuyer et al. 2006; Chang et al. 2017).
Channel ranking is repeated for each of the 8000 profiles in
the Arctic Ocean, and channel 7 (at 5.9 um) is ranked first
in 19.3% of cases, channel 15 (at 12.7 um) in 17.9% of cases,
channel 22 (at 18.6 um) in 27.5% of cases, channel 25 (at
21.1 pm) in 26.9% of cases, and 6 other channels with oc-
currences below 4%. Figure 7 illustrates the channel rank of
all 54 active channels as a fractional occurrence, highlight-
ing the importance of using the FIR channels in green. The
FIR channels from 31.2 to 53.2 wm are generally ranked
lower than all the other channels, excluding channels 4-5,
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indicating less information content due, in part, to high
NEDR values.

c¢. Vertical distribution of information

The diagonal of the averaging kernel matrix shows how the
DFS are distributed across the 101 pressure levels. The den-
sity of occurrence for the temperature profiles (Fig. 8a) and
the Q profiles (Fig. 8c) shows similar patterns, with low infor-
mation in the upper atmosphere (pressure < 200 hPa), and
evenly distributed information through the troposphere and a
slight increase near the surface. To reduce the retrieval output
size, to distribute the information approximately equally
across layers, and retain independent layer information, the
full resolution PCRTM levels are combined into 7 distinct
layers. The bounding pressure levels for the 7 layers are set to
be 0.005, 156, 307, 433, 565, 718, 892, and 1100 hPa. These
layers are similar to those used in the AIRS retrievals (Maddy
and Barnet 2008; Susskind et al. 2003) but with a smaller number
of coarse layers. The last bounding pressure level is actually set
to the surface pressure for a given profile. Consequently, the final
bounding value is less than 1100 hPa and for high elevation
terrain the low values of surface pressure may truncate the
number of filled atmospheric layers to include less than 7 tem-
perature and specific humidity values. These layer values are
the mean of the high vertical resolution level group, and the
posterior covariance and averaging kernel matrix are recom-
puted using the block averaged prior covariance and Jacobian.
Figure 8 shows the increase in DFS for the combined layer pro-
files in Figs. 8b and 8d, compared to the full vertical resolution
profiles Figs. 8a and 8&c.

6. OE retrieval tests

To test the performance of the PREFIRE atmospheric
OE retrieval, we conduct synthetic retrievals using simulated
TIRS spectra from each of the four regional test datasets
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FIG. 7. Fractional occurrence of each of the 63 channels (top numbers on the color bar) ranked in order from the
highest to lowest DFS contributions for the Arctic Ocean region. Masked channels are shown in black in the color
bar, resulting in 54 active channels. The numbers below the color bar indicate the central wavelength (wm) of the

63 channels.
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detailed in section 4. Realistic sensor noise is simulated using
the NEDR values and added to the modeled TIRS radiances
described in section 3b. In addition, the “truth” values of the
temperature profiles, log(Q) profiles, and surface temperature
are perturbed according to the prior dataset, with similar
level-to-level covariance and a priori standard deviation val-
ues of 2.0 K, 0.6 log(g kg™!) (which is about 80% of the Q
value), and 2.0 K, respectively. These perturbed values are
used as the first guess and prior for the OE retrieval, following
the retrieval design described in section 3c. The vertical reso-
lution of the atmospheric OE retrieval can be output on the
native PCRTM 101 levels or in the 7-layer combined output,
described in section 5c.

a. Sample retrievals

An example retrieval in the Arctic Ocean region illustrates
results for the temperature and specific humidity profiles (Fig. 9).
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The simulation framework uses the perturbed profile as the
prior and first guess and then the algorithm converges to the
retrieved value. The shaded envelope around the retrieved
value represents the reported 1-sigma uncertainty from the
OE retrieval. If the random perturbation that defines the sim-
ulated prior is less than a 1-sigma deviation from the truth
value, then the uncertainty envelope will contain the truth
profile and the residual value at that level would be less than
the reported uncertainty. Furthermore, since the TIRS meas-
urements provide enhanced information content, it is ex-
pected that the standard deviation of the residuals will be less
than the a priori standard deviation values for a sufficient
sample size.

b. Clear-sky performance characterization

Differences between the retrieved values and the truth
values indicate whether the retrieval is relatively unbiased,
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FIG. 9. Sample retrievals of Q and temperature for a test case in the Arctic Ocean region. The red dashed-dotted
line is the “truth” — prior profile, and the blue solid line is the retrieved — prior profile. The shaded envelope around
the retrieved — prior profile represents the reported uncertainty of the retrieval.

enhancing the accuracy from the prior, and reporting repre- The maximum bias for the 7-layer profile output is 0.092 K,
sentative uncertainty values. Here the residuals are defined occurring in the Arctic Ocean region. The largest bias in sur-
as the retrieved — “truth” values. The temperature profiles face temperature occurs in the tropics regions with a bias
biases are very small, with an average bias of 0.0026 K value of —0.16 K. If the OE retrieval is properly constructed,
throughout the 101-level profile and across all four regions. then the simulated biases will be small (as reported here),
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although these simulated values do not account for on-orbit
biases in the measured radiances that lead to larger bias in the
atmospheric retrievals.

The standard deviation of the residuals for all 4 regions are
shown in Fig. 10. Consistent with the DFS profile analysis,
there is a reduction in variability of the residuals from the 2 K
perturbation of the first guess, where the reduction is greatest
near 800-900 hPa for the Arctic Ocean region and minimal
reduction in the upper atmosphere (pressure < 100 hPa). For
the 7-layer retrieval output the reduction in variation of the
residuals is reduced further with values around 1.5 K through-
out the atmospheric profile, indicating that the information
content is enhanced by averaging out some of the random
noise in the high-resolution profile. The individual markers at
1050 hPa indicate the standard deviation of the residuals for
surface temperature which are reduced substantially from the
initial perturbations of 2 K. As a final metric, the standard de-
viation of the residuals divided by the reported uncertainty is
found to be approximately 1 throughout the profile, indicating
the reported uncertainty of the OE retrieval is accurate.

Retrieval statistics of the moisture profiles reveal similar
results to the temperature profiles. The largest bias value
[-0.12 log(g kg™ ")] of the 7-layer output is found in the

tropics region, while the polar regions all have values less than
0.086 log(g kg™ 1). Figure 11 indicates that for the full 101 level
output there is a very small reduction in the variance [initially
0.6 log(g kg™ ")] of the residuals above 200 hPa. The standard
deviation of the residual does reduce to 0.4 log(g kg™ ') between
~400 and 650 hPa and is reduced at all levels for the 7-layer
retrieval output. As found with the temperature results, unity
values of the scaled Q residuals are indicative that the reported
uncertainty is representative of the actual error in Q.

The retrieved integrated water vapor amount is useful for
input into the surface emissivity algorithm because the trans-
parency of the atmosphere due a lack of water vapor allows
for the possibility of retrieved surface emissivity from direct
measurements. The markers at 1050 hPa in Fig. 11 depict the
standard deviation of CWV in units of cm. Those values and
other CWV statistics are summarized in Table 2 for each of
the 4 test regions. CWYV bias values are small and the ratio of
the standard deviation of the residuals to the mean CWV are
higher for drier regions. These statistics support the total DFS
results in section 5a, indicating that the regions with higher
DFS (that also have higher CWV values) will ultimately have
lower percent uncertainty compared to a region with low DFS
and CWV.

TABLE 2. Column water vapor retrieval statistics for the 4 test regions.

Arctic Ocean Greenland Antarctica Tropics
Bias (cm) 0.03 0.01 0.01 —0.16
Std dev of residuals (cm) 0.33 0.08 0.06 0.89
Mean (cm) 0.88 0.20 0.11 4.92
Std dev of residuals/mean (%) 37.3 40.5 50.6 18.0
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c¢. Error considerations

The two primary inputs that are from other PREFIRE algo-
rithms are a cloud mask and surface emissivity values; hence, it
is beneficial to estimate forward model error due to uncertainty
of these inputs. PCRTM is modeling clear-sky conditions; thus,
if any clouds are unaccounted for and the cloud mask deems the
scene “clear sky” this will lead to error in the radiances. Xie et al.
(2022) describe surface emissivity retrieval that will be used as
input to the atmospheric retrieval; thus, the reported spectral
uncertainties of surface emissivity are used to estimate the for-
ward model error and the influence on the atmospheric retrieval
accuracy.

1) INFLUENCE OF SURFACE EMISSIVITY UNCERTAINTY

To investigate the impact of the surface emissivity error on
the atmospheric retrievals, statistics for the Arctic Ocean re-
gion are calculated using perturbed surface emissivity and
compared to the results in section 6b. As described in section 4,
surface emissivity values for the test cases are assigned according
to the surface temperature conditions and are derived from the
surface emissivity values given in Huang et al. (2016). The clear-
sky OE retrieval statistics (Fig. 11) that use these surface emis-
sivity values are referred to as “unperturbed emissivity” values
in Fig. 12. Perturbations to these surface emissivity values in the
OE retrieval tests must be representative of the expected uncer-
tainty such that forward model error can be properly estimated.

The spectral emissivity retrieval developed by Xie et al.
(2022), which uses 14 distinct TIRS channels in spectral re-
gions where the polar atmosphere is at least partially trans-
parent, reports the respective RMSE at each channel. Here
we use this 1-sigma uncertainty to perturb the surface emissiv-
ity with correlated error and a scale length of four channels.
The change in the standard deviation of the residuals for the
temperature profile are essentially unchanged (not shown),
whereas there is an increase in the surface temperature resid-
ual variability is approximately doubled from 0.19 to 0.40 K.
There is a small increase, compared to the unperturbed val-
ues, in the standard deviation of the residuals of the log Q
profiles near the surface and thus also for the CWV values
(Fig. 12). The standard deviation of the CWV residuals in-
creases from 0.33 to 0.36 cm, indicating that the uncertainty in
assumed surface emissivity could increase the CWV retrieval
uncertainty by 9%.

2) EXPLORING POSSIBLE CLOUD INDUCED ERROR

Water vapor retrievals that rely on cloud masks to screen
out cloudy scenes are susceptible to optically thin clouds af-
fecting the spectra of a scene deemed to be “clear sky.” Con-
ventional satellite MIR retrievals must also account for cloud
presence to retrieve atmospheric properties (Susskind et al.
2003). The Arctic Ocean region data are used to estimate the
influence of optically thin ice clouds from a statistical perspec-
tive. An ice cloud at 506 hPa with a specified optical depth is
modeled using PCRTM, producing a radiance spectrum that
is altered from the corresponding clear-sky values, thus lead-
ing to error in the atmospheric OE retrieval. The presence of
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an ice cloud leads to biases in the temperature profile, both at
the surface and in the lower troposphere (Fig. 13b). Figure 13a
indicates that the standard deviation of the residuals for the tem-
perature profile is mainly increased near and at the surface for
larger cloud optical depths. The result being that the reported
uncertainty will be greatly underestimated for the surface tem-
perature as indicated by large standard deviation of the scaled
surface temperature residuals (Fig. 13c).

The presence of an ice cloud leads to biases in the moisture
profile, although this bias changes from positive in the midtro-
posphere to negative near the surface and at upper atmo-
spheric pressures (Fig. 14b). In addition, these high level ice
clouds affect the standard deviation of the Q residuals in the
lower troposphere. For a cloud optical depth of 0.2 the vari-
ability of the residuals is 0.6 log(g kg~ ') at around 900 hPa
(Fig. 14a), which is equivalent to the standard deviation of
the prior. For an increase in cloud optical depth there is an
increase in the standard deviation of the CWV residuals
(Fig. 14a). For a cloud optical depth of 0.1, 0.2, 0.3, 0.5 the
variability is enhanced nonlinearly to 0.38, 0.45, 0.55, and
0.81 cm, compared to a clear-sky value of 0.33. The variability
of the residuals scaled by the reported uncertainty (Fig. 14c)
indicates undetected clouds that are not flagged as cloudy
scenes can introduce error such that the reported uncertainty
is not equal to actual uncertainty, resulting in a ratio that is
greater than unity. The impact of clouds on the 7-layer com-
bined retrievals are similar to the full 101-level retrievals for
both the temperature and Q (not shown). A PREFIRE cloud
mask described by Bertossa et al. (2023) estimates that scenes
with cloud optical depths greater than 0.15 will be flagged as
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FIG. 13. Temperature retrieval statistics, in the Arctic Ocean region, for ice clouds at 506 hPa with four different cloud optical depth
(cod) values, compared to the clear-sky values (red). The statistics include (a) the standard deviation of the residuals (K), (b) the mean of
the residuals (K), and (c) the standard deviation of residual scaled by the reported uncertainty (unitless). Residuals are retrieved —
“truth” values. The surface temperature values (K) are shown by the markers located at 1050 hPa.

cloudy with an 85% accuracy as evaluated with simulated
data, limiting the error caused by cloud presence.

The OE retrieval outputs two metrics that can be used to
indicate the how trustworthy the reported state variables and
associated uncertainty are and may provide a means for iden-
tifying undetected cloud-affected retrievals. Reduced x* is in-
dicative of whether the retrieved state matches the measured
radiance within the instrument noise level. Figure 15a shows
that the clear-sky reduced y* distribution is centered on ap-
proximately 1. As the ice cloud become more optically thick
the distribution is shifted and skewed toward larger reduced
x* values. Using the reduced y* metric would filter out ques-
tionable retrievals above a selected threshold (e.g., Elsaesser
and Kummerow 2008), but will not guarantee that the values
below this threshold are uncontaminated by cloud presence.
Other metrics could be used in conjunction such as the num-
ber of iterations (Fig. 15b). The simulated data used here indi-
cate 3 iterations may be a good threshold to flag the retrieval
as questionable, yet the in-orbit retrieval may have different
clear-sky convergence characteristics not captured in the
simulation, so these metrics will need to be investigated
postlaunch.
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7. Conclusions

PREFIRE is a NASA Earth Ventures mission to measure
the complete spectral range of Earth’s thermal emission from
polar orbit. The TIRS instruments provide moderate spectral
resolution observations in a compact payload, installed on
two separate CubeSat spacecraft. The PREFIRE mission will
collect the first FIR spaceborne observations in over 40 years,
using proven detector technology, with the goal of providing
at least one complete year of global data. The results and
retrieval techniques that emerge out of the PREFIRE en-
deavors provide a solid foundation for future missions and
advance our understanding of the outgoing FIR emission, en-
hancing our ability to characterize the total energy balance of
Earth.

The OE retrieval of temperature, humidity, CWV, and
surface temperature is evaluated in four test regions which
include polar regions within the Arctic Ocean, central Green-
land, and Antarctica, with an additional area in the tropical
Pacific Ocean. Calculating the degrees of freedom for signal
(DFS), using PCRTM as the forward model, quantifies the in-
formation content, indicating that the total DFS increases
with an increase in CWV. This trend is apparent in the average
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Specific TIRS channels will have more of an impact on en-

total DFS values for the four regions, wherein the drier and

higher elevation regions have lower information content. hancing the total DFS than other channels. Ranking the chan-

Another factor that increases the total DFS is the presence nels according to the information content indicates that the
highest ranked TIRS channels are centered at 5.9, 12.7, 18.6,

of near-surface temperature inversions, which occur more
and 21.1 um. For the Arctic Ocean region the FIR channels

frequently in the drier conditions.
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(18.6 and 21.1 um) are ranked first more often than both the
mid-IR channel (12.7 um) and near-IR channel (5.9 pm), in-
dicating the importance of the FIR. The FIR channels greater
than 31 wm generally have a low channel rank due, in part, to
the predicted low signal-to-noise ratio of the TIRS instrument
at these longer wavelengths. The substantial contribution to
the information content of the 16-29 um FIR channels under-
lines the utility of FIR measurements in retrieving tempera-
ture and moisture profiles, in agreement with Merrelli and
Turner (2012).

The total DFS is nonuniformly distributed throughout the
atmospheric profile on the full resolution levels used by the
PCRTM radiative transfer model. By combining the full reso-
lution levels, a coarse 7-layer profile is produced with more
equal vertical distribution of DFS. The advantage of this level
combining technique is evident in looking at the statistics
wherein the standard deviation of residuals are reduced for
the 7-layer output. Hence, an increase in layer DFS translates
to a reduction in the differences between the retrieved and ac-
tual atmospheric state at the coarser vertical resolution. The
column integrated water vapor variability as a percentage of
mean CWYV increases for the drier regions, which corresponds
to smaller total DFS in these regions.

The clear-sky atmospheric retrieval relies on a cloud mask
and an estimate of the surface emissivity as input. Like all in-
frared sounding retrievals, undetected high-level ice clouds
will increase the bias of both the temperature and humidity
profile estimates. In addition, the reported uncertainty will be
underestimated in the presence of thin ice clouds, especially
in regard to the retrieved surface temperature. The impact of
the surface emissivity retrieval uncertainty is relatively small,
contributing primarily to an increase in variability of the sur-
face temperature residuals by about a factor of 2. The effect
on the column water vapor retrieval is smaller since the increase
in the standard deviation of the CWV residuals amounts to
about 9%.

Since the present study uses simulated observations, the
quantitative assessments made here will need to be reeval-
uated with retrievals from real observations and comparison
to independent datasets. A thorough evaluation of the perfor-
mance and documentation of any operational adjustments to
the retrieval algorithm will be discussed in future work.

This PREFIRE atmospheric OE retrieval will be a valuable
tool for estimating water vapor profiles and CWV using far-
IR measurements. The retrieved amount of water vapor in
the atmospheric column feeds back into the surface emissivity
retrieval, which will provide a new perspective on the spectral
signatures of surface emissivity in the Arctic and Antarctica.
The feasibility of utilizing the FIR is demonstrated for tem-
perature and water vapor retrievals and the anticipated suc-
cess of PREFIRE will lay the groundwork for future missions
to come.
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